PYRAMID: An Object-Based
Library for Parallel Unstructured
Adaptive Mesh Refinement

Charles D. Norton, John Z. Lou,
and Thomas A. Cwik

National Aeronautics and Space Administration
Jet Propulsion Laborato

SR - TopHEIen Y

California Institute of Technology

http://hpc.jpl.nasa.gov/APPS/AMR

HPCC/Earth and Space Sciences Project

PYRAMID: Parallel Unstructured Adaptive Mesh Refinement

Modern... Simple... Efficient... Scalable...

Technoloqy Description

An advanced software library supporting parallel
adaptive mesh refinement in large-scale, adaptive
scientific & engineering simulations.

State-of-the-Art Design!

Efficient object-oriented design in Fortran 90 and MPI
Automatic mesh quality control & dynamic load balancing
Scalable to hundreds of processors & millions of elements

Application Arena

Computer Modeling & Simulation Applications with
complex geometry

* Electromagnetic and semiconductor device modeling
e Structural/Mechanical/Fluid dynamics applications

dIWViAd

John Z. Lou, Charles D. Norton, & Thomas A. Cwik
High Performance Computing Systems and Applications Group
http://hpc.jpl.nasa.gov/APPS/AMR —

Initial geometry cou

N

Pyramid Package Components

PYR A MID

L]

e Components

— Parallel mesh /O, partitioner,
logical and physical adaptive
refiners, mesh migration, and
visualization Ve g

e Development Structure

— Fortran 90: Core data structures
and internals

- C: Interface to ParMetis
graph partitioner
— MPI: Distributed-Memory

communication

Dévelopment Issues

L }

e Parallel Unstructured AMR Scheme

— Logical AMR: Iterative scheme defining refinement pattern
(with mesh quality control)

— Physical AMR: Locally refine coarse elements based on
logical refinement

e Parallel Dynamic Load Balancing Strategy

— Repartition weighted logical mesh, migrate coarse
elements, and perform local physical refinement

e Modular Design
— Performance and abstraction features of Fortran 90

Our Parallel AMR Process

e Organization

— Partitioning, Adaptive Refinement, Load Balancing, Mesh
Migration, and Element Quality Control

Initial Mesh Partitioning

v

Application Computation

<

fAddressed by AMR \

Quality Control

v

N Estimated Error
> Tolerance?

vY

Adaptive Refinement
(logical phase)

v

Load Balancing?

Mesh Improvement

Ay

Y

Mesh Smoothing?

N

3 _/

Adaptive Refinement
(physical phase)

?

Mesh Repartition and
migration

7Y

T%Chnology

L l

e Fortran 90/95 Features Modernize Programming

Modules Use-Association
Encapsulate data and routines Controls access to module
across program units content

Generic Interfaces Derived Types

One call can perform different User-defined types supporting
actions based on types abstractions in programming
Array Syntax Pointers/Allocatable Arrays
Simplifies whole array, and Supports flexible/dynamic data
array subset, operations structures

Backward compatible with Fortran 77

FOR MORE INFO...

Fortran 90 Programming. Ellis, Philips, & Lahey; Addison Wesley, 1994
http://hpc.jpl.nasa.gov/PEP/nortonc/oof90.html

R

T#chnology

]

e A Minimal PYRAMID Program

— Initialization Section
» Optional arguments override defaults

PROGRAM pyramid example

USE pyramid module

implicit none
| Statements omitted...
type (mesh), dimension(2) :: meshes
call PAMR INIT ()
call PAMR LOAD MESH PARALLEL(meshes (1),
call PAMR REPARTITION(meshes (1))
! Adaptive refinement loop..
call PAMR ELEMENT COUNT (meshes(2))
call PAMR VISUALIZE(meshes(2), “visfile.plt”)
call PAMR FINALIZE(mpi active = .true.)

END PROGRAM pyramid example

in file)

f.

Technology

e A Minimal PYRAMID Program

~ Adaptive Refinement

PROGRAM pyramid example
! Adaptive refinement loop...

do 1 = 1, refinement level
call PAMR ERROR _EST(meshes(l), &
meshes (2)

SO

2

)
4
X
{3
K
D4
L
)
£
#

)
call PAMR LOGICAL AMR(meshes (1))
call PAMR REPARTITION(meshes (1))
call PAMR PHYSICAL AMR(meshes (1), meshes(2))

end do
END PROGRAM pyramid example

%,

— Users must specify their error estimation method
— Mesh hierarchies can be defined

Technology

B |

e Object-Based Access to Data Structure
— Explicit reference to element coordinates is complicated

type (mesh) :: this
real, dimension(3) :: Xyz pos
xyz pos = this%nodes(this%elements (2) %node_indx (1)) %$coord

— PYRAMID simplifies such references

type (mesh) :: this

real, dimension(3) :: xyz pos

real, dimension(3,4) :: all pos

real, dimension(3,3,4) :: n_normal

xyz pos = PAMR ELEMENT COORD (this, element indx=2, &
node indx=1)

all pos = PAMR ELEMENT COORD(this, element indx=2)

! Access signed local normal basis for all faces
n normal = PAMR FACE NORMALBASIS (this, element indx=3)

Technology

|

e Numerous User-Driven Commands Are Included

— Initialization, Mesh I/O, Termination, Adaptive Refinement, Repartitioning,
Data Migration, Visualization, Data Structure Access, Mathematical, and
Auxiliary

— Almost every command contains optional arguments for use customization

PAMR CURRENT TIME PAMR FACE_INDX PAMR_LOAD MESH SERIAL
PAMR DEFINE_ MESH TERMS PAMR FACEEDGE_ID PAMR LOAD MESH PARALLEL
PAMR ELAPSED TIME PAMR FACEEDGE INDX PAMR LOGICAL_ AMR

PAMR ELEMENT CENTROID PAMR FACE_NORMALBASIS PAMR MAP MESH TERMS
PAMR ELEMENT COORD PAMR _FACE_UNITNORMAL PAMR PHYSICAL AMR

PAMR ELEMENT COUNT PAMR FINALIZE PAMR REPARTITION

PAMR ELEMENT_ ID PAMR GET EDGE_TERMS PAMR_SAVE MESH

PAMR _ELEMENT VOLUME PAMR GET ELEMENT TERMS PAMR_SET EDGE_TERMS
PAMR ERROR_EST PAMR GET FACE TERMS PAMR SET_ELEMENT TERMS
PAMR FACE_AREA PAMR _GET NODE_TERMS PAMR SET FACE TERMS
PAMR FACE_CENTROID PAMR INIT PAMR_SET NODE_TERMS
PAMR FACE_COORD PAMR _LOAD MESH COMP PAMR VISUALIZE

— Most commands are generic based on the mesh component applied

echnology

e Dynamic Load Balancing with ParMetis
ParMetis gives partitioning, PYRAMID performs migration

Migration handles irregular communication patterns with a
scalable and efficient non-blocking algorithm

o

s/L/\\\\\

VAP ATATAYAYAN,

We are investigating Zoltan (Sandia National Labs) as an
additional option for partitioning

Teﬂchnology

I]

e Automatic Mesh Quality Control

— Modify coarse element refinement if successive
refinements cause poor aspect ratios

No quality controﬁ 2
Refinement ‘k
s 7
)VAV\ A Orlgmal Refinement Modlfed Refinement

Quality control Avi%\ A /@\ / @\ /e \ /

Possible Refinement Patterns

— Controls quality at the expense of additional elements

Technology

e Automatic Mesh Quality Control
— Benefit of quality control applied to triangular elements

[Jo0F -1 11 B ey |

B e e SRS
A B B LT,
:‘*;'!l#li‘&mﬁ#ﬁﬂ,ﬁm@I@.ﬁfﬁffﬁyﬂﬁg;;“’&'Mm’5«f-‘ ML N
A A AR AT AT PATATAY AT e AT i St
AT AP AT AR ATy AT

; ! ‘Mﬁ?é?gx_i

&*%#

ol
L) ;
i Bl S AL A AAT,

AT VAT VAVATAY VAN A i V) DSTRR L
4u‘rm.um'mq-mgm;mvyﬂﬁ*%‘aﬁ%% R YA

B vl A I e R
LR oA TP LTAR A %)

P

Technology

PYRAMID

]

e Automatic Mesh Quality Control
— Benefit of quality control applied to tetrahedral elements

e
- "
2
1.6 .
h-J1 %
[1}
0.B 0.6
‘ 1
£ N 1
] - iy
) 2.E
W -,
Poor Mesh Elements Without Good Mesh Elements With
Quality Control Quality Control

Note : Tecplot shows some edges in the backplane that do not exist in the mesh...

Technology

e Large Scale Parallel Mesh Generation
— Specify uniform error for generation from coarse meshes

Parallel Uniform Refinement

erformance

e Pentium lll Beowulf Cluster
vs. SGI O2K Parallel AMR

— O2K scales well although the processor is
slower than the 800 Mhz Beowulf PllI

— Beowulf competes well, but performance
is limited by 100 BaseT network

After 3 Adaptive Refinements

Pentium Il Beowulf vs. SG1 02K Performance

Pentium Il Beowulf vs. SGI 02K Network
Performance on Exchange Test

Lol
% 100
[l
-]
o
[
E
- 2
s 3
= 2
w [
s [
-; -9
4 @
o
0 |
4 Pes 8 Pes 16 Pes | 32Pes | 40Pes | 64 Pes 0 5
osolozk | 22955 | 9468 | 48632 | 14842 | 1065 | 77.01 8B 512B 1KB BKB 64KB 5MB 1MB 4MB
B Beowulf|1091.19] 960.71 | 607.56 | 329.58 | 303.9 Message Size in Bytes

SR

Performance

e Pentium lll Beowulf Cluster
vs. SGI O2K Parallel AMR

— O2K outperforms Beowulf across all
refinement levels

— Beowulf shows larger percentage
improvement as problem size grows

Pentium 11l Beowulf ws. S§GI 02K Performance

¥all Clock Time {sec.}

Level 1 Level 2 Level 3
O8G| 02K 0.94 1.73 17.75

@ Beowulf 12.95 171 32.09

Earthquake Region Mesh Refined Cross-Section

— O2Kis an order of magnitude
slower from level 2 to level 3

— Performance will vary based on
mesh geometry

Note : Simulation uses 32 processors
New migration algorithms applied

Performance

S
PY¥YR &

e Pentium lll Beowulf Cluster
vs. SGI O2K Parallel AMR

— Migration algorithm improvements benefit

Beowulf significantly

— Network still hinders Beowulf with

increased problem size

Wall Clock Time (sec.)

Pentium 1l Beoveulf vs. S§GI 02K Performance

Beowulf SGI Beowulf SGI
Refinerent |Refinement | Migration | Migration
Level 1 0.15 0.04 333 0.23
Hlevel 2 0.47 049 3.7 0.31
Olevel 3 16.94 10.24 17.06 5.59

Earthquake Mesh Refinement and Migration on 32 PEs

Comparison of Old and New Migration
Algorithms
400
350
g 300
ik
o 250
E
= 200
-t
5
g 150
g
£ 100
50
0
Beowulf 5GI 02K Cray T3E
B0ld Alg. 360.1 178.54 340.71
ONew Alg. 6188 79.23

Adaptively Refined Earthquake Mesh on 8 PEs
T3E decommissioned prior to this simulation

— Our new migration algorithms are
completely non-blocking, scalable,
and utilize full-duplex channels when
available

— We estimate O2K has a 7 times
network speed advantage over 100
BaseT Beowulf

R

Performance

| Comparison of Old and New Migration

Algorithms

e Irregular Data Communication

— Migration requires irregular, but predictable,
data movement that varies in size and

Yall Clock Time [sec.)

destination
Circular-Shift “MPI_SENDRECV({...)"” " T —
[mow Alg. 360.1 178.54 240.71
» All processors inspect all of the data [anew wig.| 6128 7928

+ “Guarantees” handling of cyclic deadlock dependencies
» lIrregular data sizes affect pipelined flow performance I_y > —)) >

* MPI implicit buffering, due to poor pipeline structure, leads
to poor performance

Direct Data Transfers

* Processors send/receive specific messages

* Send continuously while checking for receives

 “Arbitrary” message ordering can flood the network switch, 1 |
leading to poor performance

Performance

e Irregu lar Data Communication Note : Broadcasts simplify handling
_ _ cases where the number of
— Reduction schemes can improve processors is not a power of two

performance, if implemented with care...

Scatter collective PE data
MPI Reduce to 0 with Broadcast
Scheme

—

0
* Not scalable and very inefficient for 4 [
large data sets

Gather partial PE data

MPI Reduce to Leader with
Subset Broadcast Scheme

Exchange within levels

* More scalable and efficient, but level 2 ¢ 1
still requires multiple broadcasts g 1
at each tree level J’ 1 ¢ 1
level O
Exchange with Subset 0 1 2 3 4 5 6
Broadcast
- level 1 | 4 | f | 4 Li
» Same characteristics as above level 2
I 2 4+ 4 I + 1+

Broadcast within exchange subset

Performance

PYRA4MID

—[Comparison of Old and New Migration
Algotithms

e Irregular Data Communication

— Reduction schemes can improve
performance, if implemented with care...

Wall Clock Time {3ec)

Our Algorithm Improvements et b e
Lo [moid alg. 360.1 178.54 340.71
+ Maximize exchanges at each level lonew aia.| etee 79.23
without repeated calculations
» Reduce data volume at each level <
with full-duplex communication . '
* Much fewer broadcasts are required evel 2: v ¢ i l
to support an arbitrary number of
processors level 1 —
» Processors which do not contribute to v ¢ 1 ¢ ¢
the calculation at a given level are level 0
idle
0 1 2 3 4 5 6

Maximum number of pairwise exchanges are performed

Performance

e Pentium Il Beowulf Cluster
vs. SGI O2K Migration

— Beowulf performs well, but network
dominates with increasing processors

— O2K is also affected for large (>30MB)
messages

Artery Segment with 1.1 Million Elements
Pentium lll Beowulf vs. 5GI1 02K Performance

3000
2500
2000
1500

1000

Yrall Clock Time {3ec.]

500

Adaptively Refined Artery Segment with 2 Million Elements

0

4 Pes 8 Pes 16 Pes | 32Pes | 40 Pes | 64 Pes

OSGI02K |2527.87 | S37.02 | 244.85 | 195.89 | 215.88 | 206.91
BBeowulf |2176.99 | 731 .46 | 321.21 | 27562 | 435,12 Note : New m|grat|on algorlthms are app“ed

Néxt Generation Featur

L |

e Development is User-Driven

— Used for adaptive refinement of multi-
scale meshes for active device modeling

e Additional Work Directions

— User-controllable boundary zone
definition

— Interpolation methods among mesh
levels

— Straightforward approaches for
incorporating error estimation

— Coarsening

e Demonstration Release
— hpc.jpl.nasa.gov/APPS/AMR

Note : Functionality is limited in demo release

PYRAMID User’s Guide

Pyramid Devetopment Group

NASA Jet Propulsion Laboratory
California Institute of Technology

US. Govermment Version
Version 0§

Crosted: June, 29, 1999
Modifed: Juy 7, 1999

